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Outline 
•  Tokamak edge plasmas and XGC1 
•  Total-f (full-f), conventional δf, and total-δf PIC 

•  New hybrid Lagrangian scheme 
–  Needed for edge simulation (reduces weight-growth from wall-

loss, enables non-linear collision) 

–  Use both particle and v-space-grid 

–  Direct weight evolution 
–  Used in XGC1/a for all physics 

•  Example in a simple ITG turbulence case 
–  The α-factor and numerical dissipation 

–  Homogeneous marker distribution in v-space 
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Tokamak Edge Plamsas 
•  Non-Maxwellian 

–  Steep H-mode gradient  

–  In-contact with wall 
–  Strong turbulence level      

(δn/<n> ~ 10%) 

•  Sources and Sinks 
–  Wall loss 

–  Neutral atoms 
–  Radiative cooling 
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XGC1: X-point included Gyrokinetic Code 
•  Uses experimental EFIT data 

–  Magnetic fields 
–  Divertor and limiter 

•  Fully nonlinear Fokker-Plank –
Landau collision on v-space grid 

•  Logical sheath to handle wall 
boundary 

•  Built-in neutral Monte-Carlo routine 
and atomic cross sections 

•  GPU+CPU hybrid capability 
•  Good weak and strong scaling to 

maximal capability of the leadership 
HPCs (titan, mira, and edison). 
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PIC	
  simula+on	
  of	
  Tokamak	
  plamsas:	
  
Total-­‐f	
  vs	
  conven+onal	
  δf	
  	
  

•  Total-f (Full-f): Solve f directly without manipulation 

§    

§  Original XGC1 

•  Conventional δf in Tokamak plasmas 
§  f = f0(fixed analytically) + δf 

§    

§  No neoclassical (grad-B drift) free energy on RHS 
§  Scale separation between mean (fo) and perturbed δf is assumed 

§  Main plasmas in most of core δf codes 
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Total-δf particle methods 
•  Total-δf 

§  f = f0+ δf 

§  D/Dt contains all physics 
§  Mathematically identical to total-f 
§  Mean and perturbed physics are solved together 
§  Includes sources and sinks 
§  δf can can become large due to strong neocalssical 

drive, wall loss, sources, or long time evolution. 
à Growing weight and noise problem 

§  Difficult to handle wall loss and non-linear collision 
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Comparison between total-f and total-δf 
[Ku et al., Nuclear Fusion 2009]  
•  Non-flux drivenà solutions decay 
•  Transient behavior is different, caused 

by the different Monte-Carlo noise 
level, but time integrated heat flux is 
the same 

•  Meaningful steady state solutions 
agree. 
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New hybrid Lagrangian scheme 
•  Solve total-δf eq. 
•                                                 ,  enables edge simulation 
•  f0 contains slowly varying physics in time.                    
•  fa is a fixed analytic distribution function (e.g. Maxwellian). 
•  fg is deviation from fa on 5D grid. 
•  fP represents δf particles, driven by the free energy in fa and fg. 
•  All physics information on continuum grid, with fp moved to v-grid. 

f = f0 + fP = fa + fg + fP
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New hybrid Lagrangian scheme 
•  Time evolution: 

–  Step 1 :  Solve particle motion and weight evolution as in the total-δf 
scheme + S operation in v-grid 

 

–  Step 2 :  Redefine fP and fg with the following operation (α<<1) 

  

DfP
Dt

= −
D( fa + fg )

Dt
+ S(v-grid)

fP ⇐ [1−α(X,V )] fP  ,     fg ⇐ fg +α(X,V ) fP
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Direct weight evolution 
•  Gyrokinetic Vlasov-Boltzman eq. 
 
•  Differential form of weight evolution (2 weights, Hu and Kromess) 

 
 
   
–  Similar to Y. Chen PoP (1997) and W. Wang PPCF(1999) except for 

deterministic particle motion from continuum collision. 
•  Direct weight evolution (new) 

–  Maker particles conserve phase space density   
•  Unlike conventional δf: Due to inaccuracy in D*/D*t operation 

–  Avoid w2 errors from time integrator and D/Dt error from gradient 
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Weight evolution of wall loss 
•  Marker particle is reflected at wall 

–  Elastic reflection 
–  Conserve phase space volume 
–  w2 remains the same 
–  cf. reflection by sheath potential 

•  f=0 with wall loss 
–  Reflected marker particle cancels f0 
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Advantage in continuum grid 
•  Weight reduction using v-space fg 

•  Continuum space physics operation with fp 
moved to continuum grid 
– Nonlinear collision 
– Neutral ionization and C-X 
– Radiation 
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ITG turbulence in cyclone geometry 

•  Collisionless 
–  Collision capability presented by R. 

Hager 
•  0.3M real space grid 
•  32 by 31 v-space grid 

–  Slow physics on v-grid 
•  400M particles 

–  1500 ptls/real space grid  
–  1.5 ptls/v-space grid 
–  Fast physics in the particles 

Research and Review Seminar, August 28th 2015 13 



α factor and numerical dissipation 

•  Non-flux driven, total-deltaf 
•  Particle à v-space operation gives numerical dissipation from 

interpolation (damping of Landau resonance). 
•  Too large α reduces turbulence and time integrated heat flux 
•  Optimal α  ~ C(Δv) Δt/[turbulence corelation time scale] 
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V-space grid resolution also matters 

•  Fine grid: v-space grid from 32 x 31 to 62 x 61 
•  Reduced numerical dissipation in v-space à restore original heat 

flux even at α = 0.004 
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Homogeneous probabilistic marker initialization in v-
space for better statistics at higher energy 
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Homogeneous Marker distribution in v-space  
and greater # of particles can allow bigger α 
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•  Homogeneous marker distribution gives better statistics 
•  Maxwellian distribution resembles less # ptls results 
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Particle Noise Reduction 

•  Variance of w1g in v-space cell  (g : Marker distribution) 
•   α = 0.001 à reduce particle noise variance by 4 in 1500 time steps. 
•  Particle noise reduction 
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Flux driven simulation 
•  Heat and cooling is 

applied to near axis and 
edge 

•  Close to steady state  
•  α=0 and α=0.001 

converges to similar 
gradient. 

•  Time integrated heat flux 
is different for α=0.01 
from α=0.  
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Summary 
•  A new hybrid Lagrangian scheme for gyrokinetic simulation of 

tokamak edge plasma is implimented in XGC1. 
–  Combination of particle and continuum 
–  Lagrangian particle push 
–  Difficult physics operation and noise reduction in continuum space 
–  Direct weight evolution and homogeneous marker distribution help 

simulation accuracy 

•  The new scheme is equivalent to ‘total-f’ with 
–  Sources and Sinks 
–  Non-maxwellian distribution 

•  fparticle is slowly converted to fv-grid. 
–  Slow time varying function à v-space grid  
–  Fast time varying function remains in particles 
–  Magnitude of α depends upon Δv and particle number.  
–  The new scheme relaxes growing weight problem. 
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